Page 130 - 006
P. 130

124



                                         )
                                - * 
    Analyze &  
'&1 !  Regression        Probit¦. *    
9 Probit
                                                        /
                                                           	/
                   Analysis box     !   "     "(    K (	  ) ' / 7.10

























                   $X     7.10 Probit analysis




                                -    &  
                &   * '      ("3 *    
9'        SPSS
                                    6/
                                          0W
                                                                                         /

                                                           6/
                                                                  1
                   Viewer (	  	  "      5     7


                              * * * * * * * * * * * *  P R O B I T    A N A L Y S I S  * * * * * * * * * * * *
                                         Parameter estimates converged after 12 iterations.
                            1                      Optimal solution found.
                                Parameter Estimates (PROBIT model:  (PROBIT(p)) = Intercept + BX):
                                 Regression Coeff.     Standard Error         Coeff./S.E.
                   CONC               .22027                .01417              15.54499
                                 Intercept             Standard Error        Intercept/S.E.
                                 -1.76963               .12525               -14.12847


                            2   Pearson  Goodness-of-Fit  Chi Square =     23.223    DF = 5   P =  .000


                                              Observed and Expected Frequencies
                                     3
                                                Number of           Observed       Expected
                          CONC    Subjects      Responses      Responses       Residual        Prob
                          .00        100.0             .0            3.839         -3.839       .03839
                          2.50       100.0          13.3          11.143          2.157        .11143
                          5.00       100.0          33.3          25.198          8.102        .25198
                          7.50       100.0           46.7          45.320          1.380        .45320
                                10.00      100.0           63.3          66.753         -3.453       .66753
                                12.50      100.0           73.3          83.739        -10.439      .83739
                                15.00      100.0          100.0         93.754          6.246        .93754
   125   126   127   128   129   130   131   132   133   134   135