

Polymer Tribology

Sujeet K Sinha • Brian J Briscoe
Editors

Imperial College Press

CONTENTS

Editorial	Polymer Tribology — A Preface	v
Acknowledgements		xi
Part I	Bulk Polymers	1
Chapter 1	Adhesion and Friction of Polymers	3
1	Introduction	3
2	Polymers and Polymer Composites	4
3	Mechanical Behaviour of Polymer-Based Materials	5
4	Adhesion of Polymers	5
4.1	Thermodynamic Approach (Specific Surface Energy)	7
4.2	Contact Adhesion	8
4.3	Contact of Rough Surfaces	11
4.4	Contact of Rough Surfaces with Adhesion	13
4.5	Measurement of Adhesion	16
5	Friction of Polymer over the Hard Counterface	19
5.1	Effect of Load on Friction	20
5.2	Effect of Sliding Velocity on Friction	21
5.3	Effect of Temperature on Friction	23
6	Wear of Polymers	24
6.1	Abrasive Wear	26
6.2	Adhesive Wear and Friction Transfer	28
6.3	Fatigue Wear	30
6.4	Frictional Behaviour of Polymer Materials with Nanofillers	31

7	Conclusions	32
	Acknowledgements	33
	References	33
Chapter 2	Tribophysical Interpretation of Polymer Sliding Mechanisms	38
1	Introduction	39
2	Experimental Techniques	41
2.1	Raman Spectroscopy	41
2.2	Thermal Analysis	43
2.3	Other Techniques	44
3	Polymer Surface Analysis	45
3.1	Depositions of Internal Lubricant	45
3.2	Conformational Changes	47
3.3	Crystallisation	52
3.4	Polymerisation	57
3.5	Thermal Degradation	59
3.6	Physico-Chemical Degradation	63
4	Polymer Wear Debris Analysis	66
5	Conclusions	71
	References	72
Chapter 3	Scaling Effects in Tribotesting of Polymers	74
1	Introduction	75
2	Tribotesting Facilities at Different Scales	77
2.1	Meso-Scale Testing	77
2.2	Small-Scale Testing	79
2.3	Large-Scale Testing	81
2.4	Field Testing	82
3	Meso-Scale to Small-Scale Correlation	82
3.1	Influence of Deformation and Contact Situation	82
3.2	The Influence and Efficiency of Internal Lubrication	86

4	Small-Scale to Large-Scale Correlation	87
4.1	Single Parameter Model: Effect of Contact Pressure	87
4.2	Two-Parameter Model: <i>pv</i> -Limit	90
4.3	Macroscopic Geometry Model	92
4.4	Influence of Controlled Temperature on Small-Scale Testing	99
5	Large-Scale to Full-Scale Correlation	101
6	Summary and Conclusions	105
	Acknowledgements	106
	References	106
Chapter 4	Scratch Experiments and Finite Element Simulation: Friction and Nonlinearity Effects	108
1	Introduction	109
2	Experimental Observations	110
3	Finite Element Modelling	114
4	Finite Element Results	120
4.1	Plastic Strain Field	120
4.2	Mean Contact Strain	122
4.3	Contact Geometry	128
5	Discussion	130
5.1	Relationship between Contact Geometry and Mean Contact Strain	130
5.2	Influence of the Mesh Size	132
5.3	Definition of the Representative Volume	133
5.4	Influence of the Strain Hardening	135
6	Conclusion	138
	References	139
Chapter 5	Nanoindentation and Indentation Creep of Polymeric Materials	141
1	Introduction	142
2	Brief Summary of Basic Nanoindentation Analysis	144
2.1	Doerner and Nix's Analysis Method	149

2.2	Oliver and Pharr's Analysis Method	152
3	Problems of Nanoindentation of Polymeric Materials	155
4	Approaches to the Nanoindentation of Polymers or Other Soft Materials	156
4.1	Load Relaxation Experiments	157
4.2	Time-Dependent Properties	158
4.3	Nanoindentation with Continuous Stiffness Measurement	160
4.4	Fitting of Unloading Curve of Nanoindentation Polymers	163
4.5	Rate-Dependent Properties	166
5	Indentation Creep Experiments and Analysis	168
5.1	Basic Indentation Creep Analysis	170
5.2	Meaning of the Fitting Parameters	173
5.3	Factors Affecting the Indentation Creep	178
5.4	Modelling of Indentation Creep	184
5.5	Other Creep Functions and Comparison	185
6	Theoretical Analysis of Nanoindentation of Polymers	188
7	Nanoindentation Using Scanning Probe Microscope	189
8	Summary, Conclusions and Implications	190
	Acknowledgements	190
	References	191
Chapter 6	Effects of Physiological Factors on Wear of UHMWPE for Joint Prostheses	195
1	Introduction	195
2	Physiological Factor Relating to Joint Kinematics	198
2.1	Shape of Sliding Pathways in Joint Prostheses During Walking	199
2.2	Effect of Multidirectional Sliding Motion on Wear of UHMWPE	200

2.3	Wear Characteristics of UHMWPE Evaluated in Multidirectional Sliding Wear Test	203
3	Physiological Factor Relating to Joint Environment	213
3.1	Degradation of UHMWPE in Human Body	214
3.2	Effect of Macromolecules on Friction and Wear	215
3.3	Effect of Protein and Lipid on Wear of UHMWPE	217
4	Summary	222
	Acknowledgements	222
	References	223
Chapter 7	Biopolymer Tribology	227
1	A Brief History of Biopolymers in Total Hip Replacements	227
2	The Use of Biopolymers in Other Prostheses	229
3	Biopolymer Wear and Wear Debris	231
4	Wear Testing of Biopolymers	236
4.1	Implant Wear Testing	236
4.2	Biopolymer Wear Testing	240
5	Influence of Counterface Roughness on Wear	243
6	Influence of Lubricant on Wear	243
7	Soak Controls	247
8	Theoretical Lubrication Analysis	249
9	Friction	251
10	Other Polymers (Nonpolyethylene)	254
11	All-Polymer Articulations	255
12	Future Developments in Biopolymers	257
13	Future Challenges	259
14	Summary	259
	References	259

Chapter 8	Frictional Behaviour of Miniature Journal Polymer-on-Polymer Bearings	267
1	Introduction	269
2	Experimental Studies	269
2.1	Investigation of Friction Coefficient and Time Needed to Start to Operate of Bearing	269
2.2	Investigation of Surface Topography of Rubbing Components by Use of AFM	275
2.3	Experimental Investigation of Elasticity Modulus of Surface Layers of Polymeric Bearing Materials	275
2.4	Experimental Studies of Surface Free Energy of Polymer	287
3	Model of Contact and Predicting of Friction Coefficient	289
3.1	Model of Force Interactions between Contacting Polymeric Surfaces — Static Contact	290
3.2	Model of Force Interactions Occurring between Polymeric Rubbing Surfaces — Phase of Transition from Stationary State to Movement	296
3.3	Results of Modelling	303
4	Comparison of Predicted and Experimentally Determined Frictional Behaviours of Studied Bearings	307
5	Conclusions	308
	References	310
Chapter 9	State-of-the-Art of Rubber Tribology	312
1	Introduction	312
2	Rubber Friction	313
2.1	Sliding Friction on Self-Affined Rough Surface	313
2.2	Friction of Polydimethylsiloxane (PDMS) Elastomers	318

2.3	The Other Topics	320
3	Rubber Lubrication	322
3.1	Effects of Surface Roughness on the Tribological Behaviours of Rubber under Lubrication Conditions	322
3.2	Wet Sliding Friction of Elastomers	324
3.3	Robust Molecular Lubrication Layers	325
4	Rubber Wear	326
4.1	Wear Behaviour of Elastomers	326
4.2	Wear Behaviour of Rubber Composites and Coatings	329
5	Wear of Metal by Rubber	331
5.1	A Brief Historic Background	331
5.2	Wear of Steel by Rubber in the Presence of Liquid Media	331
6	Tribology of Rubber Assemblies	333
6.1	Tires	333
6.2	Elastomeric Seals	335
6.3	Brakes	338
6.4	Rubber Journal Bearing and Rubber Acetabular Bearing Materials	339
7	Concluding Remarks	340
	Acknowledgements	341
	References	341
Part II	Reinforced Polymers	345
Chapter 10	Wear of Polytetrafluoroethylene and PTFE Composites	347
1	Processing and Structure	347
2	Sliding Friction	350
3	Wear	354
4	PTFE Composite Wear Reduction Mechanisms	356
4.1	Transfer Film Adhesion	357
4.2	Preferential Load Support	358
4.3	Debris Size Control	361

5	Polymer-Filled PTFE Composites	363
6	Radiation-Induced Wear Resistance in PTFE	365
7	Tomorrow's Challenges: Understanding Nano-Filled PTFE	367
	Acknowledgements	371
	References	372
Chapter 11	Polymer Composites for Tribological Applications in a Range between Liquid Helium and Room Temperature	375
1	Introduction to Cryotechnology	375
2	Materials and Tribological Characterisation Methods	383
2.1	Materials	383
2.2	Tribotests at Room Temperature and Cryogenic Environments	391
3	Friction and Wear of PTFE-Based Composites at Room Temperature	395
4	Tribology of Selected PEEK- and PTFE-Based Composites in Cryogenic Environments	401
4.1	Room Temperature Air vs. 77K Liquid Nitrogen	401
4.2	Influence of the Cryogenic Medium	405
5	Conclusions	412
	References	413
Chapter 12	Mechanical and Tribological Behaviour of Polymers Filled with Inorganic Particulate Fillers	416
1	Introduction	417
2	Effect of Fillers on Mechanical Properties	418
2.1	Stiffness Modulus	418
2.2	Strength	420
2.3	Toughness	422
3	Effect of Fillers on Friction and Wear	423
3.1	Microparticle Fillers	424
3.2	Nanoparticle Fillers	428

4	Mechanisms of Wear Modification	432
4.1	Sharing of Load by Hard Particles	433
4.2	Transfer Film Topography	434
4.3	Transfer Film Bonding	441
5	Concluding Remarks	446
	References	447
Chapter 13	The Sliding Wear of Polypropylene and Its Blends	449
1	Introduction	449
2	Polypropylene	450
3	Ultra High Molecular Weight Polyethylene	450
4	Polyethylene Terephthalate/Polypropylene (PET/PP) Blends	452
5	Recycled Polyethylene Terephthalate	454
6	Wear Properties of PP/PET Blends	454
6.1	Influence of Addition of RPET on Wear of PP	457
6.2	Effect of UHMWPE Addition on Wear Rate of PP and Its Blends	460
	References	468
Chapter 14	Engineering Polymers and Composites for Machine Elements	470
1	Introduction and Overview	470
2	Rolling-Sliding Tests by the Twin-Disc Technique	472
2.1	Principles	472
2.2	Unreinforced Thermoplastics — Polyoxymethylene and Polyamide 66	474
2.3	Fibre-Reinforced Thermoplastics — Polyamides	476
2.4	Internal Lubricants and Additives — PTFE	478
2.5	Comparison of Results and Validity of Data	479
3	Gears and Gear Testing	480
4	Thermal Aspects of Polymeric Gearing	480

4.1	Heat Generation	481
4.2	Operating Temperatures of Polymeric Gears	482
4.3	Bulk Temperature Estimation	485
5	Failure Modes of Polymer Gears	487
5.1	Thermal Failure	487
5.2	Fatigue	488
5.3	Other Forms of Failure	491
6	Wear of Polymer Gears	491
6.1	Commercial against Experimental Wear Data	492
6.2	Wear Manifestation	493
6.3	Wear Rates of Various Polymers	495
7	Mechanical Efficiencies of Polymer Gears	495
7.1	Theoretical Efficiencies	496
7.2	Experimental Efficiencies and Coefficients of Frictions	496
8	Polymer Gears in High Performance Applications	498
8.1	Power Density Comparisons	499
8.2	Elastohydrodynamic Aspects of Polymer Gears	501
8.3	Novel Forms of Lubrication	503
	References	504
Chapter 15	Brake Friction Materials	506
1	Introduction	506
2	Ingredients of Brake Friction Materials	509
2.1	Binder Resins	510
2.2	Reinforcements	512
2.3	Property Modifiers	513
2.4	Manufacturing Parameters	522
3	Sliding Interface	523
4	Friction Materials and Environmental Issues	526
5	Friction Evaluation Tests	527
6	Concluding Remarks	529

	Acknowledgements	530
	References	530
Chapter 16	Study of Tribological and Mechanical Properties of Mold-in-Colour Polypropylene Used in Automobile Industry	533
1	Introduction	533
2	Tested Samples	536
3	Preliminary Tests for Tip Selection	537
4	Progressive Load Scratch Tests	538
5	Constant Load Scratch Tests	542
6	Quantitative Characterisation of Scratch Damages	546
7	Indentation Tests	549
8	Correlation	552
9	Summary	552
	Acknowledgements	553
	References	554
Part III	Polymer Films	557
Chapter 17	Mechanical Properties of Thin Polymer Films Within Contacts	559
1	Introduction	559
2	Contact Mechanics of Confined Polymer Coatings	561
2.1	Oedometric Approximation for the Normal Indentation of Confined Layers	561
2.2	Lateral Contacts	569
3	Visco-Elastic Properties of Confined Polymer Films in the Glass Transition Range	570
3.1	Linearity of the Contact Lateral Response	570
3.2	Pressure Dependence of the Linear Visco-Elastic Modulus	571
4	Plastic Properties of Confined Polymer Films	574
4.1	Plastic Imprints under Normal Indentation	574

4.2	Elastic/Plastic Indentation Limit for Confined Polymer Films	577
5	Conclusions	580
	References	580
Chapter 18	Tribological Behaviour of Polymer Brush Prepared by the "Grafting-from" Method	582
1	Introduction	582
1.1	Definition of Polymer Brush	582
1.2	Tribology of Polymer Brush Prepared by "Grafting-to" Method	584
1.3	Advantage of Polymer Brush Prepared by the "Grafting-from" Method Combined with Living Polymerisation	587
2	Preparation of High-Density Polymer Brush on Substrate	589
2.1	Initiator-Immobilised Silicon Substrate	589
2.2	General Procedure for Surface-Initiated ATRP	590
3	Frictional Property of High-Density Polymer Brush	592
3.1	Dependence of Solvent Quality	592
3.2	Water Lubrication by Hydrophilic Polymer Brush	593
3.3	Effect of Graft Density on Wear Resistance	597
4	Conclusions	598
	References	599
Chapter 19	AFM Testing of Polymeric Resist Films for Nanoimprint Lithography	603
1	Introduction	603
2	Process of Imprint	604
3	NIL Problems	606
4	Testing of Materials for NIL	608
4.1	Introduction	608

4.2	AFM Studies of Surface Topography, Friction and Adhesion of Ultrathin Resist Films	610
4.3	Wettability Studies	613
4.4	Studies of Properties of Polymeric Resist Films versus Temperature	617
5	Studies of Friction between Mold Surface and Resist Film	624
6	Studies of Anti-Stiction Layers	625
7	Summary	626
	Acknowledgements	626
	References	627
Chapter 20	Tribological Studies of Ultra-High Molecular Weight Polyethylene (UHMWPE) Thin Films on Silicon Surface	629
1	Introduction	629
1.1	General Background on Polymer Thin Films	629
1.2	Tribological Properties of Polymer Thin Films	632
1.3	Motivation and Objectives of the Present Study	635
2	Materials and Sample Preparation	636
2.1	Materials	636
2.2	Preparation of UHMWPE Film on Si Surface	636
2.3	Experimental Procedures	637
3	Results and Discussion	641
3.1	Characterisation of the UHMWPE Film on Si Surface	641
3.2	Effect of PFPE Overcoating onto UHMWPE Film Modified Si Surface on Tribological Properties	652

4	Conclusions	656
	Acknowledgements	657
	References	657
Chapter 21	Tribology of UHMWPE Thin Films on Si with Interfacial Layers and Modifications	660
1	Introduction	660
2	Experimental Procedures	663
2.1	Materials	663
2.2	Preparation of Different Layers on Si Substrate	663
2.3	Surface Analysis	665
2.4	Friction and Wear Tests	673
3	Friction and Wear Results	673
3.1	Comparison of UHMWPE Film with and without DLC Interface	673
3.2	Effect of UHMWPE Thickness on the Friction and Wear Properties of Si/DLC/UHMWPE	675
3.3	Comparison of UHMWPE Film with Different Interfaces	679
4	Discussion	682
5	Conclusions	686
	Acknowledgements	687
	References	687
Index		689