JOHN F. KENNEDY LIBRARY
PRINCE OF SONGKLA UNIVERSITY
PATTANI THAILAND

VISCOELASTIC PROPERTIES OF POLYMERS

John D. Ferry

Professor of Chemistry University of Wisconsin

THIRD EDITION

LIBRARY
FACULTY OF SCIENCE
MAHIDOL UNIVERSITY

100000000000000000000000000000000000000	
M	อกินั้นทนาการ
	กาก
	ากนาวิจาร เรื่องเกรียวสิน
	TINTANA ITELLULURETUK

JOHN WILEY & SONS, INC.

New York · Chichester · Arisbane · Toronto

Contents

1. The Nature of Viscoelastic Behavior

- A. Introduction, 1
- B. Strain, Stress, and Linear Constitutive Equations for Simple Shear, 3
 - 1. Equations of Change, 4
 - 2. Infinitesimal Strain Tensor, 4
 - 3. Stress Tensor, 5
 - Constitutive Equation for Linear Viscoelasticity in Simple Shear, 6
- C. Description of Linear Time-Dependent Experiments in Shear, 8
 - 1. Stress Relaxation after Sudden Strain, 8
 - 2. Stress Relaxation after Cessation of Steady Shear Flow, 9
 - 3. Stress Growth after Initiation of a Constant Shear Rate, 9
 - 4. Creep after Sudden Stress, 10
 - 5. Other Types of Transient Experiments, 10
 - 6. Periodic or Dynamic Experiments, 11
 - Correlation of Experimental Data to Provide Information over Wide Ranges of Time Scale, 14
- D. Mechanical Model Analogies of Linear Viscoelastic Behavior, 15
- E. The Boltzmann Superposition Principle; Elastic Recovery, 17
- F. Linear Stress-Strain Relations for Other Types of Deformation, 20
 - 1. Bulk Compression or Dilatation, 21
 - 2. Simple Extension, 22
 - 3. One-Dimensional Extension in Infinite Medium (Bulk
 - Longitudinal Deformation), 25
 - 4. Inhomogeneous Deformations, 25

G.	Finite Strains and	Large Strain Rates, 2	26
----	--------------------	-----------------------	----

- Normal Stress Differences, 27
- 2. Non-Newtonian Flow, 29
- 3. Other Time-Dependent Phenomena, 29

Supplement 1: Summary of Moduli and Compliances, 29

Supplement 2: Complex Notation for Dynamic (Sinusoidal) Stress-Strain Relations, 30

2. Illustrations of Viscoelastic Behavior of Polymeric Systems

33

A. Linear Viscoelastic Behavior in Shear or Simple Extension, 33

- 1. Description of the Polymers Chosen for Illustration, 34
- The Creep Compliance, 37
- 3. The Stress Relaxation Modulus, 40
- The Storage Modulus, 41
- 5. The Loss Modulus, 42
- The Dynamic Viscosity, 43
- 7. The Storage Compliance, 44
- 8. The Loss Compliance, 45
- 9. The Loss Tangent, 46

B. Linear Viscoelastic Behavior in Bulk (Voluminal) Deformation, 48

- C. Nonlinear Viscoelastic Phenomena in Shear, 49
 - 1: Normal Stress Differences, 49
 - 2. Non-Newtonian Flow, 51
 - 3. Stress Relaxation after Large Sudden Strains, 52
 - 4. Stress Relaxation after Cessation of Steady-State Non-Newtonian Flow, 52
- D. Conclusions, 54
- 3. Exact Interrelations among the Viscoelastic Functions

56

A. Mechanical Model Analogies, 57

- 1. The Maxwell Element, 57
 - 2. The Voigt Element, 58
- 3. Discrete Viscoelastic Spectra, 58
- B. The Relaxation and Retardation Spectra, 60
 - 1. The Relaxation Spectrum, 60

- 2. The Retardation Spectrum, 61
- 3. Interrelations between the Spectra, 63
- C. Calculation of Viscoelastic Functions and Constants from the Spectra, 64
- D. Calculation of Relaxation and Retardation Spectra from Experimentally Determined Viscoelastic Functions, 67
- E. Calculation of One Experimentally Observable Viscoelastic Function from Another, 68
 - 1. Interrelation of the Two Transient Functions, 68
 - 2. Interrelation of a Transient with the Corresponding Dynamic Functions, 68
 - 3. Interrelations between the Components of a Complex Dynamic Function, 69
 - 4. Evaluation of Viscoelastic Constants, 70
- F. Calculation of More Complicated Experimental Functions, 71
 - 1. Deformation at Constant Rate of Strain, 71
 - 2. Deformation at Constant Rate of Stress Loading, 72-
 - 3. Stress Relaxation after Cessation of Steady-State Flow, 73
 - 4. Creep Recovery or Elastic Recoil, 73
 - Recovery after Partial Stress Relaxation, 74
- G. Comments on the, Phenomenological Theory of Linear Viscoelasticity, 74
- H. Relations from Nonlinear Constitutive Equations, 76

Approximate Interrelations among the Linear Viscoelastic Functions

.80

- A. Calculation of Spectra from Experimental Functions, 81
 - 1. Relaxation Spectrum from Relaxation Modulus, 81
 - 2. Retardation Spectrum from Creep Compliance, 82
 - 3. Relaxation Spectrum from Storage Modulus, 83
 - 4. Retardation Spectrum from Storage Compliance, 84
 - 5. Relaxation Spectrum from Loss Modulus, 85.
 - 6. Retardation Spectrum from Loss Compliance, 86
 - 7. Criteria of Applicability of Various Approximations, 86
 - B. Interrelations between the Spectra, 87
 - 1. One Spectrum and Transient Known, 87
 - 2. One Spectrum and Dynamic Data Known, 88.
 - 3. One Spectrum Known with Constant Logarithmic Slope, 88

- C. Calculation of Viscoelastic Functions from the Spectra, 88
- D. Calculation of One Experimentally Observable Viscoelastic Function from Another, 89
 - 1. Interrelation of the Two Transient Functions, 89
 - 2. Interrelation of a Transient with the Corresponding Dynamic Functions, 90
 - Interrelation between the Components of a Complex Dynamic Function, 92
 - 4. Criteria of Applicability, 92
- E. Calculation of Spectra from More Complicated Experimental Functions, 92
- F. Table of Correction Factors, 94

5. Experimental Methods for Viscoelastic Liquids

A. Creep, 99

- 1. Rotation between Coaxial Cylinders, 99-
- 2. Torsion between Parallel Plates or Cone and Plate, 101

- 3. Calculation of η_0 and J_e^0 from Creep Measurements in the Terminal Zone, 103
- 4. Nonlinear Creep and Non-Newtonian Viscosity, 104
- B. Shear Stress Relaxation and Stress Growth, 104
- C. Normal Stress Measurements, 105
 - 1. Measurements of Total Thrust, 106
 - 2. Measurements of Pressure Gradients, 106
 - 3. Measurements Involving Hole Pressures, 107
- D. Dynamic (Oscillatory) Measurements without Sample Inertia Effects ("Gap Loading"), 107
 - Direct Measurements of Sinusoidally Varying Stress and Strain, 108
 - Measurements Involving the Mechanical Impedance of a Moving Element, 110
 - 3. Transducer Measurements by Electrical Impedance, 114
- E. Dynamic (Oscillatory) Measurements of Characteristic Impedance ("Surface Loading"), 116
- F. Shear Wave Propagation, 121
- G. Dynamic Measurements on Liquid in Solid Matrices, 124

- H. Measurement of Dynamic Viscoelastic Functions by Eccentric

 Steady Flow Instruments, 124
- I. Isothermal and Adiabatic Measurements, 125
 - Difference between Adiabatic and Isothermal Moduli for Perfect Elastic Materials, 125
 - 2. Critical Frequencies for Isothermal-Adiabatic Transitions, 126
 - 3. Time-Dependent Effects Associated with Heat Flow, 126
- 6. Experimental Methods for Soft Viscoelastic Solids and Liquids of High Viscosity

- A. Creep, 132
- B. Stress Relaxation, 133
- C. Dynamic Measurements without Sample Inertia Effects, 135
 - Direct Measurements of Sinusoidally Varying Stress and-Strain, 135
 - 2. Transducer Measurements by Electrical Impedance, 136
 - 3. Compound Resonance Devices with Forced Oscillations, 139
 - 4. Compound Resonance Devices with Free Oscillations, 142
- D. Wave Propagation, 144
- E. Methods with Other Features, 148
 - 1. Simple Extension at Constant Strain Rate, 148
 - 2. Impact Measurements, 149
 - 3. Sinusoidal Deformations with Large Amplitudes, 149
 - 4. Combined Static and Dynamic Measurements, 150
 - 5. Dynamic Mechanical Measurements Combined with Other Physical Properties, 150
- 7. Experimental Methods for Hard Viscoelastic Solids

- A. Creep and Stress Relaxation, 156
- B. Direct Measurements of Sinusoidally-Varying Stress and Strain, 157
- C. Resonance Vibrations, 158
- D. Compound Resonance Vibration Devices, 160
- E. Wave Propagation, 161
- F. Methods Adapted to Fibers, 161
 - Creep and Stress Relaxation, 162
 - 2. Dynamic Measurements, 163

XVI		
8.		perimental Methods Bulk Measurements
	A.	Bulk Transient Meass

- rements 168
- Bulk Dynamic Measurements, 169
 - 1. Homogeneous Deformation with Direct Measurement of Pressure, 169
 - Homogeneous Deformation by Longitudinal Waves in a Confining Liquid, 170
 - Longitudinal Bulk Wave Propagation, 171

9. Dilute Solutions:

Molecular Theory and Comparison with Experiments

- Rigid Solute Molecules, 179
 - 1. Elongated Rodlike Models, 179
 - 2. Other Rigid Models, 182
 - 3. Jointed Bead-Rod Model, Three Beads, 183
- Linear Flexible Random Coils: The Bead-Spring Model, 183
 - The Bead-Spring Model with No Hydrodynamic Interaction among Beads, 185
 - The Bead-Spring Model with Dominant Hydrodynamic Interaction, 191
 - Partial Hydrodynamic Interaction, 192 3.
 - 4. Non-O-Solvents, 193
 - Comparisons of Characteristic Parameters for Bead-Spring Model Theories, 194
 - Comparison of Theory for Linear Molecules with Experiment, 194
 - Effect of Molecular Weight Distribution, 198
 - Branched Flexible Random Coils, 200
- Partially Flexible Elongated Molecules, 204
 - 1. Helical Macromolecules, 205
 - Polyelectrolytes, 207 2.
- Behavior at Finite Concentrations, 209
 - Effects of Domain Overlap, 209
 - Onset of Entanglement Coupling, 212
 - Rigid Rodlike Macromolecules, 213
- Behavior at High Frequencies and in High-Viscosity Solvents, 214

- F. Non-Newtonian Flow, 219
- G. Practical Aspects of Viscoelasticity of Dilute Solutions, 219
- 10. Molecular Theory for Undiluted Amorphous Polymers and Concentrated Solutions: Networks and Entanglements

- Undiluted Polymers of Low Molecular Weight, 224
 - Modified Rouse Theory, 225
 - 2. Closed Form of Rouse Theory: Ladder Networks, 228
 - Effect of Molecular Weight Distribution, 229
 - Effect of Branching, 232 4.
- Cross-Linked Networks, 233 B.
 - Idealized Network with Fixed Cross-Links, 234
 - Network with Mobile Cross-Links, 237 2.
 - 3. Network with Random Distribution of Strand Lengths, 239
 - 4. Role of Network Defects, 240
- C. Uncross-Linked Polymers of High Molecular Weight, 241
 - The Nature of Entanglement Coupling, 241
 - Behavior in the Transition Zone, 247
 - 3. Behavior in the Terminal Zone, 247
 - Transient Network Models for Viscoelastic Properties in the Terminal Zone, 252
 - Practical Aspects of Behavior in the Terminal Zone, 253 5.
 - Behavior in the Plateau Zone, 254
- D. Behavior in and near the Glassy Zone, 254
 - Limiting Behavior at High Frequencies, 255
 - 2. Persistence of Relaxation and Retardation Spectra into the Glassy Zone, 256
- E. Nonlinear Behavior in Uncross-Linked Polymers of High Molecular Weight, 257
 - 1. Apparent Viscosity in Non-Newtonian Flow, 257
 - 2. Steady-State Compliance and Normal Stress Differences, 259
 - 3. Other Manifestations of Nonlinear Behavior, 259
- Dependence of 11. Viscoelastic Behavior . on Temperature and Pressure

- Origin of the Method of Reduced Variables, 266
 - Deduction from the Dilute-Solution Theories for Flexible Random Coils, 266
 - Deduction from Theory for Undiluted Polymers, 267
 - Empirical Development of the Use of Reduced Variables, 270 3.
 - Reduced Variables for Undiluted Polymers in Terms of Steady-Flow Viscosity, 271
 - Reduced Variables Applied to Polymers of High Molecular Weight, 271
 - Application of Reduced Variables near the Glassy Zone of Time or Frequency, 272
- Procedure and Criteria for Applicability of the Method of Reduced Variables, 273
- The WLF Equation and the Relation of Temperature Dependence of Relaxation Times to Free Volume, 280-
 - 1. The Glass Transition and Free Volume, 280
 - 2. Relation of Molecular Mobility to Free Volume, 285
 - 3. The WLF Equation, 287
 - Modification of the WLF Equation with an Energy Term, 289 4.
- Free-Volume Interpretation of the Dependence of Relaxation Times on Pressure and Other Variables, 291
 - Pressure Dependence of Relaxation Times, 291
 - Interrelation of Effects of Temperature and Pressure on 2. Relaxation Times, 294
 - Changes in Relaxation Times during Isothermal Contraction near the Glass Transition, 298
 - Effects of Molecular Weight and Other Variables on Free 4. Volume and Relaxation Times, 298
 - Reduced Variables and Free-Volume Parameters from Other Than E. Viscoelastic Measurements, 301
 - Dielectric Dispersion, 301 1.
 - Nuclear Magnetic Resonance Relaxation, 302 2.
 - Diffusion of Small Molecules in Polymers, 303
 - Examples of More Limited Applicability of the Method of Reduced Variables, 304
 - Glassy and Highly Crystalline Polymers, 304
 - Multiple Viscoelastic Mechanisms with Different Temperature Dependences, 305
 - Changes in Internal Structure due to Crystallinity, 312
 - Treatment of Data at Fixed Frequency or Time and Varying Temperature, 312

- H. Application of Reduced Variables to Bulk and Nonlinear Viscoelastic Properties, 314
 - 1. Bulk (Volume) Viscoelasticity, 314
 - 2. Normal Stresses, 314
 - 3. Non-Newtonian Viscosity, 315
 - Ultimate Properties and Other Practical Aspects of Behavior, 315
- 12. The Transition Zone from Rubberlike to Glasslike Behavior

- A. The Location of the Transition Zone on the Time or Frequency Scale, 322
- B. The Monomeric Friction Coefficient, 328
 - 1. Comparisons at Constant Temperature, 329
 - Relation of Friction Coefficient to Free Volume in the Methacrylate Series, 333
 - 3. Comparisons at Corresponding Temperatures, 335
 - 4. Estimation of \$6 from the Steady-Flow Viscosity, 337
 - 5. Correlation of \$\int_0\$ with Data from Diffusion of Small Foreign Molecules, 338
 - 6. Relation of to the Onset of the Transition Zone, 342.
- C. Shapes of the Spectra and Viscoelastic Function in the Transition Zone, 343
 - Relaxation Spectra Reduced to Corresponding States, 343
 - Relation of the Shape of H to Those of Other Viscoelastic Functions, 346
 - . Behavior of Copolymers and Polymer Mixtures, 348
 - 4. Behavior of Filled Systems, 356
- D. The Transition Zone in Polymers of Low Molecular Weight, 359
- 13. The Plateau and
 Terminal Zones in
 Uncross-Linked Polymers

- A. Manifestations of Entanglement Networks, 366
 - Maxima in the Loss Compliance and Retardation Spectrum, 366
 - 2. Storage Modulus and Loss Tangent, 368
 - 3. Relaxation and Retardation Spectra, 369
- Estimations of Entanglement Spacings, 372
- : 1. Integration of Retardation Spectrum or Loss Compliance, 372

The Critical Molecular Weight Me from Viscosity or

Dependence of Non-Newtonian Shear Viscosity on Shear

Terminal Relaxation Time and Steady-State Compliance, 382

4. The Critical Molecular Weight M' from Steady-State

Other Methods for Estimating Me, 376

Viscosity at Vanishing Shear Rate, 379

Viscoelastic Time Scale, 377

Compliance, 378

C. Behavior in the Terminal Zone, 379

Rate, 380

1.

2.

3.

14.

	4. -5.	Effects of Molecular Weight Distribution, 387
D.	Beh	avior in the Plateau Zone, 391
		Width of Plateau Zone on Time Scale, 392 Andrade Creep, 392 Effects of Molecular Weight Distribution, 393
E.	Nor	nlinear Behavior in Uniaxial Extension, 395
	2.	Stress Relaxation, 396 Uniaxial Extension at Constant Strain Rate, 398 Creep and Creep Recovery, 400
		Linked Polymers mposite Systems 404
A.	Effe	ects of Cross-Linking in the Transition Zone, 404
B.	Effe	ects of Cross-Linking in the Plateau and Terminal Zones, 407
3	4.5.6.7.	Stages of Cross-Linking, 411 Approach to Elastic Equilibrium in Lightly Cross-Linked Systems, 414 Slow Relaxation Mechanisms and the Plateau Modulus G_N , 417 Relaxation of Unattached Macromolecules in Networks, 419 Densely Cross-Linked Polymers, 420
C.	No	nlinear Behavior in Cross-Linked Polymers, 420
1	3.	Nonlinear Behavior at Equilibrium, 420 Stress Relaxation and Creep, 422 Stress-Strain Behavior at Constant Rate of Deformation, 423 Small Dynamic Strains Superimposed on Large Static Strains, 424

- 5. Oscillating Deformations with Large Static Strains, 424
- Time-Dependent Mechanical Phenomena due to Chemical D. Changes, 425
- Effects of Rigid-Particle Fillers, 426
 - Equilibrium Elastic Properties, 426
 - Viscoelastic Properties, 429
- Behavior of Blends of Incompatible Polymers, 431

15. The Glassy State

437

- Amorphous Solids and Supercooled Liquids of Low Molecular Weight, 438
- Polymers in the Glassy Zone, 443
 - 1. Viscoelastic Functions at Constant Temperature, 444
 - Isochronal or Quasi-Isochronal Viscoelastic Measurements, 448
 - Local Molecular Motions, 449
- Nonlinear Behavior of Glassy Polymers, 452
 - 1. Stress and Strain Dependence of Viscoelastic Properties, 452
 - Anisotropic Systems, 453

16. Crystalline Polymers

- Viscoelastic Functions at Constant Temperature, 458
 - Oriented Single-Crystal Mats, 458 1.
 - Highly Crystalline Polymers from Melts, 460 2.
 - Polymers with Low Degree of Crystallinity, 464 0
- Isochronal Viscoelastic Measurements, 465
 - 1. Oriented Single-Crystal Mats, 466
 - 2. High Crystalline Polymers from Melts or Cast from Solvents, 467
 - Polymers with Low Degree of Crystallinity, 469
- C: Relation of Viscoelasticity to Molecular Motions, 472
 - Motions within the Crystal Lattice, 472 Motions outside the Lattice, 473
- D. Resonance Dispersion, 473
- E. Nonlinear Viscoelastic Behavior, 475
- F. Effects of Orientation and Drawing, 477

17. Concentrated Solutions, Plasticized Polymers, and Gels

A. The Transition Zone, 487

 The Temperature Dependence of Relaxation and Retardation Times, 487

486

- Concentration Dependence of the Monomeric Friction Coefficient, 489
- 3. Shapes of the Viscoelastic Functions, 498
- 4. Isochronal or Quasi-Isochronal Viscoelastic Measurements, 499
- 5. Reduced Variables for Concentration Dependence, 500

B. The Plateau Zone, 501

- 1. Manifestations of Changes in Entanglement Spacing with
 - Concentration, 501
- 2. Reduced Variables for Concentration Dependence, 506
 - 3. Elongated Rigid or Semirigid Macromolecules, 507

C. Linear Viscoelastic Behavior in the Terminal Zone, 509

- 1. Viscosity at Vanishing Shear Rate, 509
- 2. Terminal Relaxation Time and Steady-State Compliance, 511
- 3. Effects of Branching and Molecular Weight Distribution, 515

D. Nonlinear Viscoelastic Behavior in the Terminal Zone, 515

- Dependence of Non-Newtonian Shear Viscosity on Shear Rate, 516
- 2. Creep and Creep Recovery, 518
- 3. Normal Stress Differences, 520
- 4. Stress Relaxation after Large Sudden Strains, 520
- 5. Stress Growth and Relaxation following Initiation and Cessation of a Constant Shear Rate, 523
 - . Combined Oscillatory and Steady-State Shear, 527
- 7. Nonlinear Constitutive Equations, 528

E. Gels Cross-Linked in Solution, 529

- 1. Pseudo-Equilibrium Mechanical Properties, 531
- 2. Viscoelastic Properties in the Transition Zone, 534
- 3. Viscoelastic Properties in the Plateau Zone, 537
- 4. Behavior at Very Long Times, 537
- F. Gels Swollen after Cross-Linking, 539
- G. Gels of Semirigid Macromolecules, 540

18. Viscoelastic Behavior in Bulk (Volume) Deformation

545

- A. Volume Creep, 545
 - Criteria of Linearity and Relation of Nonlinearity to Free Volume, 547 –
 - 2. Experimental Measurements, 550
- B. Isothermal Volume Change after Temperature Jump, 550
 - 1. Kinetics of Volume Changes, 551
 - Effects of Isothermal Volume Changes on Shear and Elongational Relaxation Processes, 554
- C. Dynamic Properties in Bulk Compression, 558
- D. Bulk Longitudinal Viscoelastic Behavior, 562
 - 1. Dilute Polymer Solutions, 563
 - 2. Undiluted Polymers and Concentrated Solutions, 564

19. Applications to Practical Problems

- A. Viscoelastic Behavior under More Complicated Time Patterns, 571
 - Tensile Stress Relaxation following Deformation at Constant Strain Rate, 571
 - Energy Stored, Energy Dissipated, and Work of Deformation in Transient Loading, 571
 - Energy Stored and Dissipated in Periodic (Sinusoidal) Loading, 572
 - 4. Cycling Deformations at Constant Strain Rate, 572
 - 5. Rebound of Rigid Spheres from Viscoelastic Surfaces, 574.
 - 6. Rolling Friction on a Viscoelastic Surface, 574
- B. Miscellaneous Applications of Viscoelastic Properties, 575
 - Generation of Heat in Rapid Oscillating Deformations, 575
 - 2. Vibration Damping and Noise Abatement, 576
 - 3. Sliding Friction, 577
 - 4. Tack and Adhesion, 578
 - 5. Abrasion, 579
 - 6. Processability, 579
 - 7. Technological Characteristics of Cross-Linked Rubbers, 579
 - Tire Flatspotting, 580
 - 9. Lubrication, 580

xxiv		CONTENTS	
C.		nmerical Examples of Approximate Predictions of Viscoelastic havior, 580	
D.	1. 2. 3. 4. 5. 6.	Minimum in Loss Tangent for Uncross-Linked Polymers, 58 Onset of Transition Zone on Frequency Scale, 581 Terminal Relaxation Time (Low Molecular Weight) and Its Dependence on Temperature and Pressure, 581 Terminal Relaxation Time (High Molecular Weight), 582 Effect of Plasticizer on Mechanical Loss, 582 Terminal Relaxation Time in Dilute Solution, 582 imate Mechanical Properties, 583	
ъ.			
	1. 2.	Rupture above the Glass Transition Temperature, 583 Rupture below the Glass Transition Temperature, 587	
Appendi	х А.	List of Symbols	591
Appendi	к В.	Applicability of Various Dynamic Methods for Viscoelastic Measurements	599
Appendi	x C.	Form Factors and Maximum Stresses and Strains for Various Deformation Geometries	602
Appendi	x D.	Examples of Numerical Data for Dynamic and Relaxation Moduli and Creep Compliance	604
Appendix	E.	Theoretical Viscoelastic Functions Reduced in Dimensionless Form	610

633

Author Index

Subject Index