

Bio-Based Polymers and Composites

RICHARD P. WOOL . XIUZHI SUSAN SUN

CONTENTS

	Preface	X111
	About the Authors	xvii
1	OVERVIEW OF PLANT POLYMERS:	
	RESOURCES, DEMANDS, AND	
	SUSTAINABILITY	1
	Xiuzhi Susan Sun	
	Plant Proteins	2
	Plant Oils	5
	Plant Starches	6
	Agriculture Fibers and Cellulose	6
	Market Potential for Plant Polymers	7
	Sustainable Agriculture Industry of the Future	9 12
	Conclusion	12
	References	12
2	PLANT MATERIALS FORMATION	
	AND GROWTH	15
	Xiuzhi Susan Sun	
	Plant Material Synthesis	16
	Plant Growth	27
	Transgenic Plants	30
	References	32

VIII	CONTENTS

3	ISOLATION AND PROCESSING OF PLANT	
_	MATERIALS	33
	Xiuzhi Susan Sun	
	Oil Extraction and Refining	33
	Starch Wet Milling	41
	Protein Isolation	48
	References	55
4	POLYMERS AND COMPOSITE RESINS	
	FROM PLANT OILS	56
	Richard P. Wool	
	Introduction	56
	Synthetic Pathways for Triglyceride-Based Monomers	57
	Polymers from Plant Oils	75
	Properties of Plant Oil Resins	85
	Castor Oil-Based Polymer Properties	102
	Summary of Plant Oil-Based Polymer Properties	110
	References	111
5	COMPOSITES AND FOAMS FROM PLANT	
	OIL-BASED RESINS	114
	Richard P. Wool	
	Triglyceride-Based Composite Materials	115
	Manufacturing of Glass Fiber-Reinforced Composites	117
	Composite Properties	118
	Sheet Molding Compound	123
	Bio-Based Polymeric Foams	135
	Summary of Bio-Based Composites	146
	References	147
6	FUNDAMENTALS OF FRACTURE IN	
	BIO-BASED POLYMERS	149
	Richard P. Wool	
	Fracture of Polymers: Fundamental Theory	150
	Applications of Fracture Theory	156
	Microscopic to Macroscopic Fracture Relations	172
	Polymer-Polymer Interfaces	176
	Polymer-Solid Interfaces	191

co	NTENTS	_
	Summary of Fractures in Bio-Based Polymers References	1 1
7	PROPERTIES OF TRIGLYCERIDE-BASED	
	THERMOSETS	20
	Richard P. Wool	
	Introduction Distribution of Fatty Acids and Unsaturation Sites in	. 2
	Triglycerides	2
	Distribution of Functional Groups on Triglycerides	2
	Cross-Link Density	
	Tensile Properties	
	Computer Simulations of Triglyceride Structure and Strength Glass Transition Temperature versus Structure	
	Rheology of Triglyceride Resins	2
	Results and Discussion	2
	Summary of Triglyceride Rheology	1
	References	•
	Description of the San College	
	PRESSURE-SENSITIVE ADHESIVES,	
	ELASTOMERS, AND COATINGS FROM PLANT OIL	25
	Richard P. Wool	2.
	Introduction to Pressure-Sensitive Adhesives	2
	Macroemulsion and Miniemulsion Polymerization	- 2
	Polymer Characterization	2
	Polymer Properties	- 2
	Polymer–Solid Adhesion Modification of PSAs Bio-Based Elastomers	
	Bio-Based Coatings	
	References	2
	THERMAL AND MECHANICAL PROPERTIES	
	OF SOY PROTEINS	29
	Xiuzhi Susan Sun	1000
	Structure and Thermal Behavior of Soy Protein	2
	Curing Strength of Soy Proteins	3
	Mechanical Properties of Soy Proteins	3
	Physical Aging of Soy Protein Plastics	3

V	
^	

CONTENTS

	Compatibility of Soy Protein with Polyester Water Absorption of Soy Protein	313 319 323
	Summary References	323
10	SOY PROTEIN ADHESIVES	327
	Xiuzhi Susan Sun	
	Protein Adhesion Mechanism	328
	Protein Unfolding and Adhesive Properties Effects of Curing Temperature and Pressure on	332
	Adhesive Strength	340
	Viscosity of Soy Protein Adhesives	343
	Natural Straw Composites with Soy Protein Adhesives	345
	Production of Low-Cost Adhesive in Powder Form	349
	Soy Protein Latex-Like Adhesives	354
	Adhesive Strength and Water Resistance at Isoelectric pH	359
	References	366
	* U.S. 1	
1 1	PLASTICS DERIVED FROM STARCH	
	AND POLY (LACTIC ACIDS)	369
	Xiuzhi Susan Sun	
	Starch Structure	369
	Thermal Properties of Starch	372
	Starch as a Filler	375
	Starch as a Nucleating Agent	381
	Coupling Reagents for Starch and PLA Blends	382
	Role of Water in Starch and PLA Blends	394
	Plasticization of Starch and PLA Blends	396
	Physical Aging of Starch and PLA Blends	403
	Summary	405
	References	407
12	BIO-BASED COMPOSITES FROM SOYBEAN	
	OIL AND CHICKEN FEATHERS	411
	Richard P. Wool	
	Introduction	411
	Processing of Chicken Feather Fiber Composites	413
	Electronic Materials from Feather Composites	424
	Mechanical and Fracture Properties	428

CONT	ENTS	хі
	Carbon Fibers from Chicken Feathers Summary of KFS Composites References	435 445 446
13	HURRICANE-RESISTANT HOUSES FROM	
	SOYBEAN OIL AND NATURAL FIBERS Richard P. Wool	448
	Introduction and Background	449
	Bio-Based Materials	452
	Composite Processing and Manufacturing	455
	Applications: Housing Construction Material	460
	Design of the Bio-Based Composite Roof	466
	Design, Testing, and Evaluation of a Model Beam	468
	Building a Bio-Based Composite Roof	475
	Other Potential Applications	477
	References	480
14	CARBON NANOTUBE COMPOSITES WITH	
	SOYBEAN OIL RESINS	483
	Richard P. Wool	
	Introduction to Carbon Nanotubes	484
	Single-Walled Carbon Nanotube Composites	485
	Multiple-Walled Carbon Nanotube Composites	490
	On the Dispersibility of Carbon Nanotubes	506
	Summary	519
	References	520
15	NANOCLAY BIOCOMPOSITES Richard P. Wool	523
	Preparation of Nanoclay-Soybean Oil Composites	526
	Soy-Nanoclay Composites	529
	Summary	549
	References	549
16	LIGNIN POLYMERS AND COMPOSITES	551
	Richard P. Wool	
	Introduction to Lignin	552
	Lignin Applications	557

XII -		CONTENT
	Lignin Modification	56
	Eight Would be Saubean Oil Monomers	56

Lignin Modification	562
Unmodified Lignin Addition to Soybean Oil Monomers	564
Chemical Modification of Kraft Lignin	569
Flore Huggins Theory	574
Butyrated Kraft Lignin in Thermosetting Polymers	578
Comment on Biorefinery	591
References	593
References	
Index	599
Index	